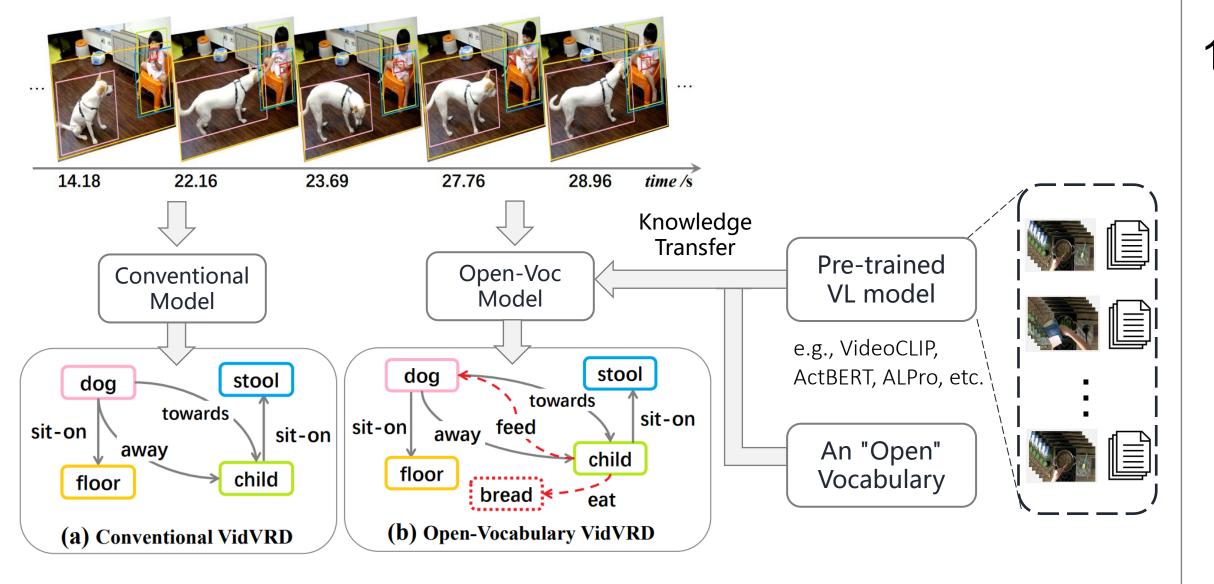


Compositional Prompt Tuning with Motion Cues for Open-Vocabulary Video Relation Detection



Kaifeng Gao, Long Chen, Hanwang Zhang, Jun Xiao, Qianru Sun

Code

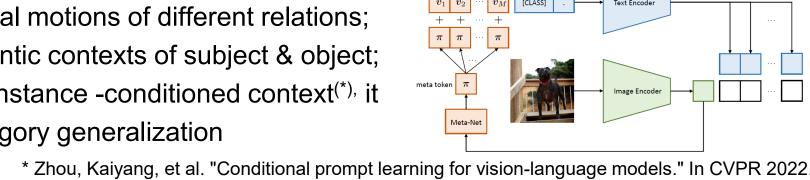
Open-Vocabulary Video Visual Relation Detection

Our contributions:

- a new paradigm for Open vocabulary Video VRD.
- a compositional & motion-based prompt tuning/selection approach, which is tailored for **Re**lation **Pro**mpt tuning (RePro)

Compositional & Motion –based Prompting

Motion Cues

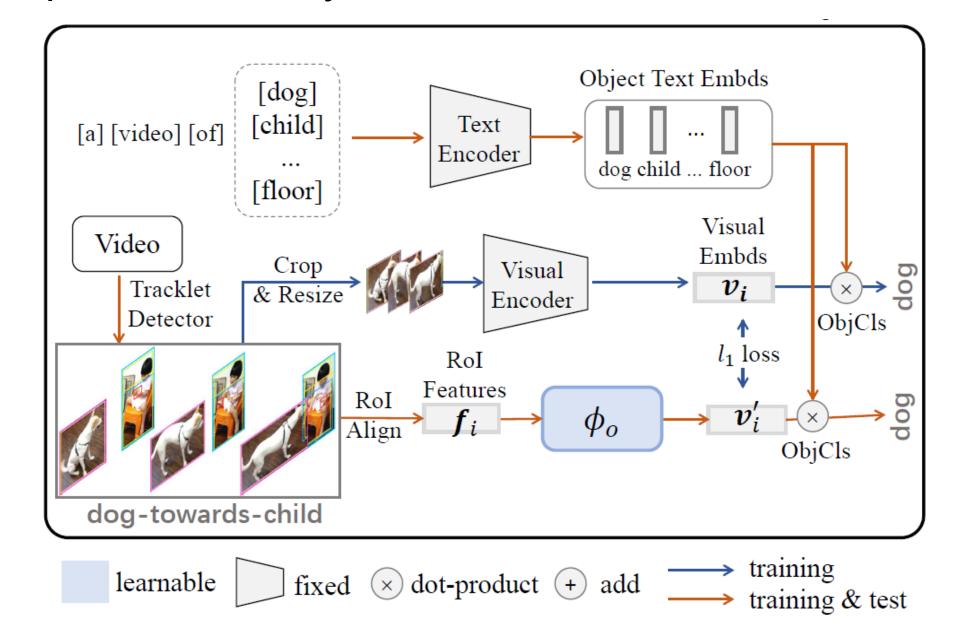

Selector

Advantages:

- It considers spatial-temporal motions of different relations;
- It considers different semantic contexts of subject & object;

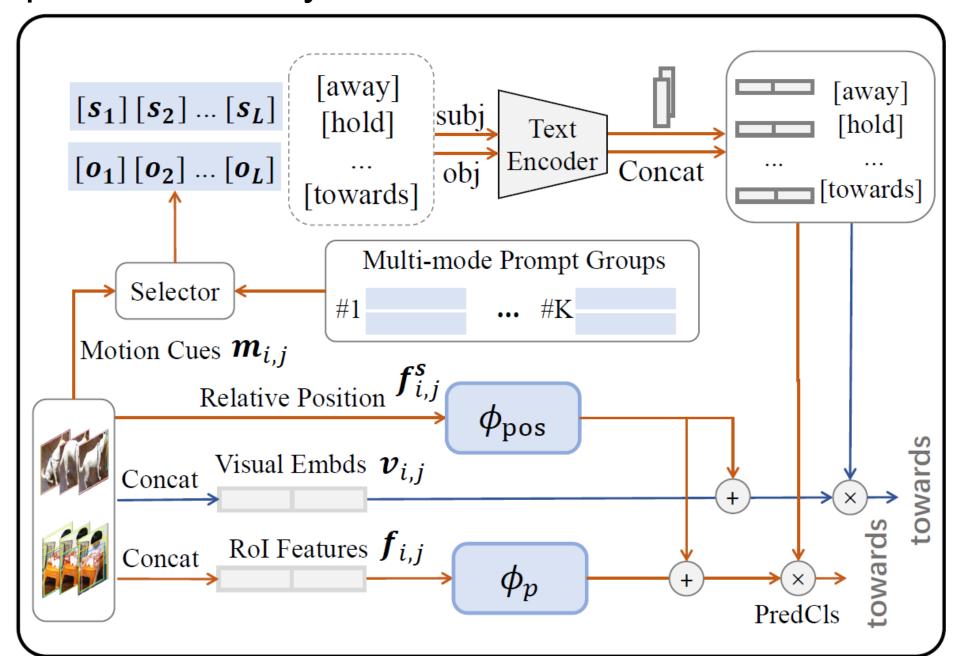
Multi-mode Prompt Groups

Compared to category or instance -conditioned context(*), it achieves better cross-category generalization



 $[s_1] [s_2] \dots [s_L]$

 $[o_1] [o_2] \dots [o_L]$


Distillation vs. Prompt –based Knowledge Transfer

1. Open-Vocabulary Tracklet Detection

- Train a visual-to-language (V2L) projection module $\phi_o(\cdot)$ (on base classes);
- Transfer knowledges from VLM via distillation (i.e., l_1 loss);
- Avoid directly inference the heavy pipeline of VLM's visual encoder (test time).

2. Open-Vocabulary Relation Detection

Motion Pattern: $m_{i,j} = \text{sign}([G_{i,j}^s - \gamma, G_{i,j}^e - \gamma, G_{i,j}^e - G_{i,j}^s])$, where $m_{i,j} \in \{+, -\}^3$, $G_{i,j}^* = \text{GIoU}(T_i, T_j)$ (G^s : start frame, G^e : end frame).

Transfer knowledge via prompt, instead of distillation

- stage-1: train the prompt representations in the comp. & motion —based manner
- stage-2: train V2L module, i.e., $\phi_p(\cdot)$ (on base classes) based on the learned prompt representations.

Experiments Results

Compare with SOTA in conventional setting

Methods	Training Data		SGDet		RelTag			
Methods	Training Data	mAP	R@50	R@100	P@1	P@5	P@10	
Su et al. (2020)	base+novel	19.03	9.53	10.38	57.50	41.40	29.45	
Liu et al. (2020)	base+novel	18.38	11.21	13.69	60.00	43.10	32.24	
Li et al. (2021)	base+novel	22.97	12.40	14.46	68.83	49.87	35.57	
Gao et al. (2022)	base+novel	17.67	9.63	11.29	56.00	43.80	32.85	
RePro (Ours)	base	21.33	12.92	15.94	59.00	41.09	28.87	
RePro (Ours)	base+novel	25.55	13.83	17.33	62.50	45.80	32.05	

- When trained with only *base* category samples, our RePro still achieves comparable performance with SOTA.

Comparison in the Open-Vocabulary setting

Split	Methods	SGDet			SGCls			PredCls		
	Methods	mAP	R@50	R@100	mAP	R@50	R@100	mAP	R@50	R@100
7	♦ ALPro	1.05	3.14	4.62	3.69	7.27	8.92	4.09	9.42	10.41
Novel	VidVRD-II PaPro†	3.57	8.59	12.39	5.70	13.22	18.34	7.35	18.84	26.44
	RePro [†]	2.56	8.26	11.73	8.63	15.04	18.84	9.34	18.67	24.13
	RePro	6.10	13.38	16.52	10.32	19.17	25.28	12.74	25.12	33.88
7	★ ALPro	3.20	2.62	3.18	3.92	3.88	4.75	4.97	4.50	5.79
All	♦ VidVRD-II	12.74	9.90	12.59	17.26	14.93	19.68	19.73	18.17	24.90
	RePro [†]	16.21	11.14	14.56	22.37	16.83	21.71	25.43	21.36	28.04
	RePro	21.33	12.92	15.94	30.15	19.75	25.00	34.90	25.50	32.49

- ★ Pre-trained VLM zero-shot inference
 - Li, Dongxu, et al. "Align and prompt: Video-and-language pre-training with entity prompts." In CVPR 2022.
- ◆ Baseline VidVRD model
- Shang, Xindi, et al. "Video visual relation detection via iterative inference." ACM Multimedia. 2021.

Ablation Studies for Comp. & Motion Prompting

	С		М	SGDet			SGCls			PredCls		
		C	M	mAP	R@50	R@100	mAP	R@50	R@100	mAP	R@50	R@100
	#1	×	×	3.50	9.91	13.88	7.21	14.54	19.83	8.63	20.33	27.43
split	#2	\checkmark	×	5.57	11.40	14.87	10.31	16.52	21.81	11.83	22.31	30.90
-	#3	\checkmark	Ens	6.24	11.57	15.20	10.77	16.03	21.98	12.36	21.32	29.91
Novel-	#4	\checkmark	Rand	7.14	11.90	14.87	10.85	16.52	23.30	12.42	22.64	30.90
Z	#5	\checkmark	\checkmark	6.10	13.38	16.52	10.32	19.17	25.28	12.74	25.12	33.88
	#1	×	×	19.73	12.26	15.36	26.80	18.24	23.06	30.80	23.70	30.42
splits	#2	\checkmark	×	18.47	11.95	15.28	25.52	18.13	23.12	29.45	23.39	30.17
·sb	#3	\checkmark	Ens	20.15	12.38	15.61	27.93	18.61	23.55	31.68	23.61	30.29
All-	#4	\checkmark	Rand	21.72	12.71	15.78	29.15	19.15	24.13	33.11	24.38	31.49
	#5	\checkmark	\checkmark	21.33	12.92	15.94	30.15	19.75	25.00	34.90	25.50	32.49

C: Compositional; M: Motion cues;

Ens: ensemble all the learned prompts by averaging their representations.

Rand: randomly select a prompt without considering motion cues

Ablation Studies for different predicate groups

Methods	move	sit	run	walk	stop	stand	fly	swim
Ens	34.48	50.92	12.90	18.30	37.03	35.51	37.50	15.38
Rand	37.93	51.85	16.12	18.30	44.44	36.44	50.00	15.38
RePro	44.82	55.55	25.80	18.95	40.47	41.12	50.00	12.82

- Performance reported as Recall@100 (%) of PredCls
- Predicates are grouped by the prefix their words, e.g. "run past", "run next to"
- It indicates that the performance improvements of RePro are largely attributed to motion cues