

Classification-Then-Grounding: Reformulating Video Scene Graphs as Temporal Bipartite Graphs Kaifeng Gao¹, Long Chen², Yulei Niu², Jian Shao¹, Jun Xiao¹ ¹Zhejiang University ²Columbia University

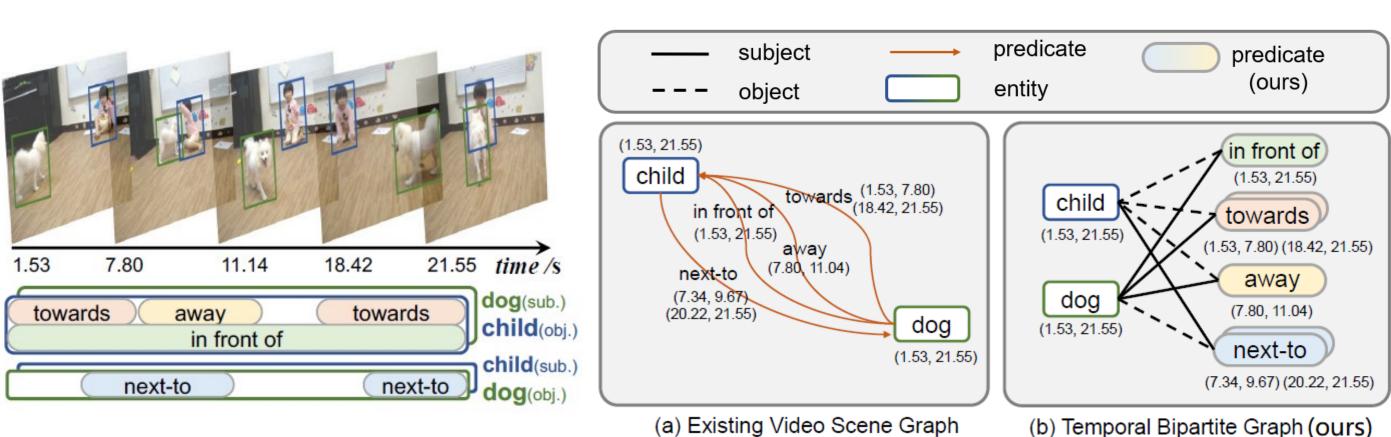
Detecting Video Visual Relations

Previous Work subj-obj pair proposal \rightarrow relation classification

- Label assignment is partially correct
- Discard relation context
- Upper-bounded by proposals

Ours

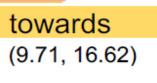
relation classification \rightarrow temporal grounding


(9.90, 11.80)

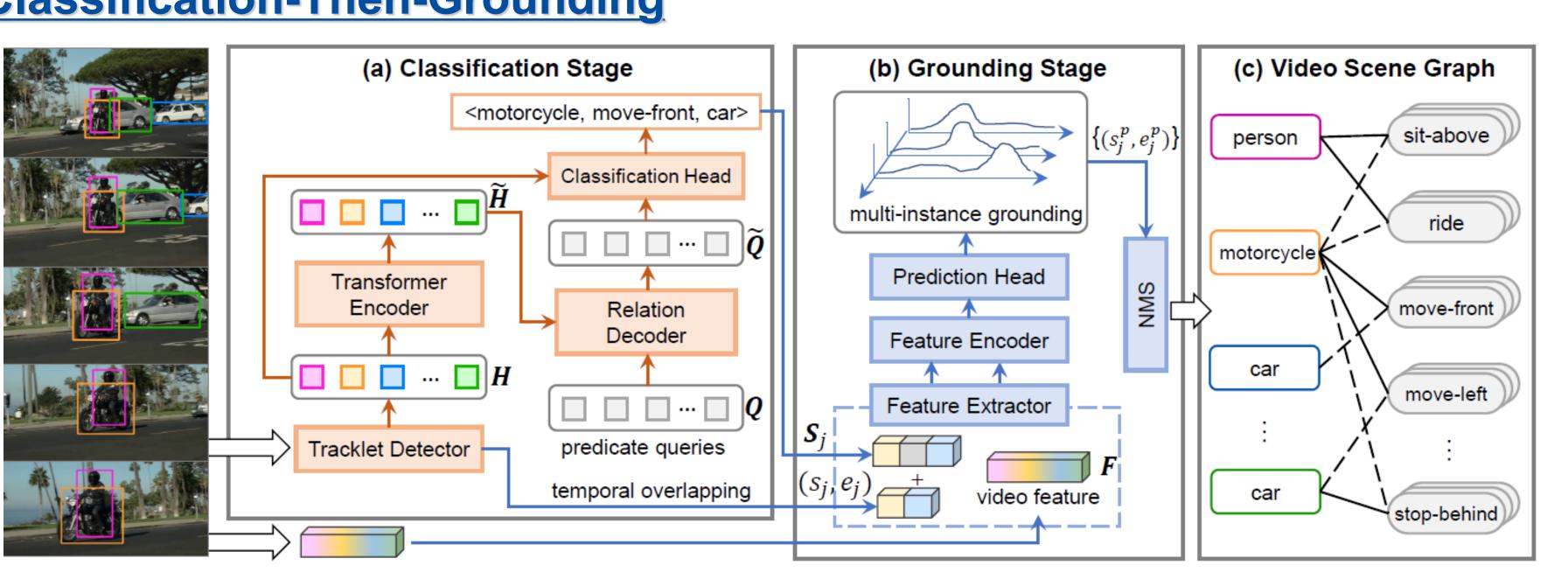
а

(10.10, 13.10)

- A new classification-then-grounding framework
- A novel **BI**partite **G**raph based model BIG
- Reformulate video scene graphs as temporal bipartite graphs


Temporal Bipartite Graphs

Advantages


- it avoids enumerating all entity pairs for predicate (relation) prediction
- it is easier to model entity pairs with multiple predicates
- it can be easily extended to more general relations with more semantic roles

(9.21, 11.21)

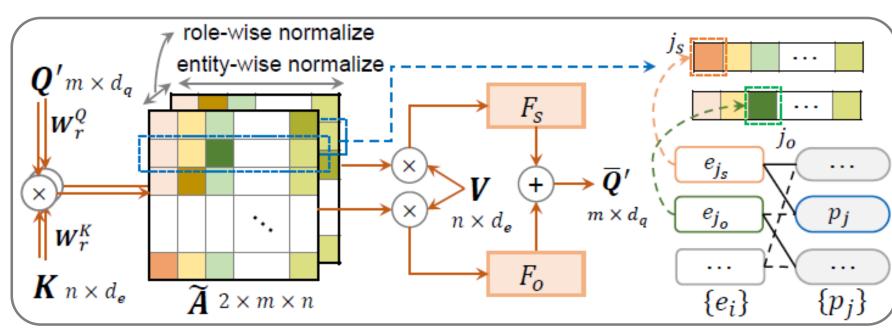
behind

Classification Stage

- A Transformer-based model
- Classifiv the categories of all entity & predicate nodes
- Learn the edges of the bipartite graph

D norm	F_*	RelD	et (%)	RelTag (%) P@1 P@5			
K- 1101111		mAP	R@50	P@1	P@5		
	\checkmark	7.98	7.71	61.65	51.10		
\checkmark		8.02	7.36	61.65	51.68		
\checkmark	\checkmark	8.29	7.92	64.42	51.70		

Table 5. Ablations of BIG-C for the Rnorm and F_* of RaCA module on VidOR.


Grounding Stage

- Localize the temporal location of each predicate node
- Take triplet category as language query

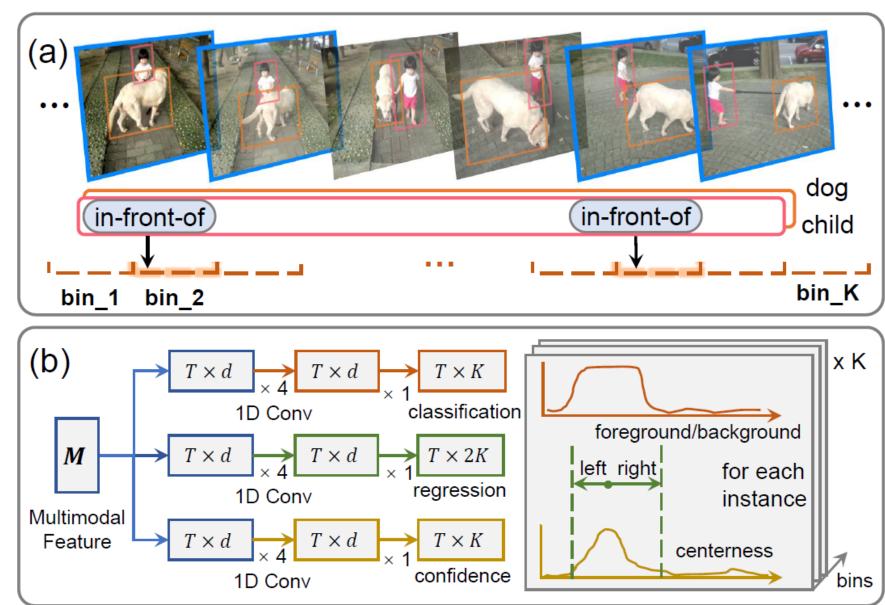

$\pi \mathbf{P}_{100}$	IIX,	_S @K ('	$fR_M @K (\%)$			
#Bins	50	100	150	50	100	150
1	12.96	15.59	16.76	5.53	6.86	7.46
5	13.07	15.83	17.26	5.75	7.20	8.05
10	13.04	15.89	17.61	5.75	7.30	8.25

Table 6. Ablations for multi-instance grounding with different number of bins on VidOR.

Role-aware Cross-Attention

Multi-instance Grounding

Experiments Results

arXiv

Compare with SOTA on VidOR dataset

Models	Detector	Features			RelDet			RelTag			
WIOUEIS		Visual	Lang	Motion	Mask	mAP	R@50	R@100	P@1	P@5	P@10
Liu et al. [24] _{CVPR'20}	RefineDet	$RoI+I3D_r$		\checkmark		6.85	8.21	9.90	51.20	40.73	
Chen et al. [13] _{ICCV'21}	Faster R-CNN	$RoI+I3D_r$	\checkmark	\checkmark		10.04	8.94	10.69	61.52	50.05	38.48
Chen <i>et al</i> . [13] _{ICCV'21}	Faster R-CNN	$RoI+I3D_r$	\checkmark	\checkmark	\checkmark	11.21	9.99	11.94	68.86	55.16	43.40
IVRD [22] _{MM'21}	Faster R-CNN	RoI		\checkmark		7.42	7.36	9.41	53.40	42.70	
Chen et al. [13] _{ICCV'21}	Faster R-CNN	RoI		\checkmark		8.93	7.38	9.22	56.89	44.76	34.07
VidVRD-II [34] _{MM'21}	Faster R-CNN	RoI		\checkmark		8.65	8.59	10.69	57.40	44.54	33.30
BIG-C (Ours)	MEGA	RoI				8.03	7.60	9.39	62.25	50.96	40.30
BIG (Ours)	MEGA	$RoI+I3D_f$				8.28	7.74	9.82	62.13	51.25	40.48
VRU'19-top1 [37] _{MM'19}	FGFA		_∕_	<u>-</u> -		6.56	6.89	8.83	51.20	40.73	
MHA [36] _{MM'20}	FGFA		\checkmark	\checkmark		6.59	6.35	8.05	50.72	41.56	
VRU'20-top1 [46] _{MM'20}	CascadeRCNN	RoI	\checkmark	\checkmark	\checkmark	9.93	9.12		67.43		
Chen <i>et al</i> . [13] _{ICCV'21}	Faster R-CNN	RoI	\checkmark	\checkmark		9.54	8.49	10.17	59.24	47.24	35.99
BIG-C (Ours)	MEGA	RoI	\checkmark			8.29	7.92	9.65	64.42	51.70	41.05
BIG (Ours)	MEGA	$RoI+I3D_f$	\checkmark			8.54	8.03	10.04	64.42	51.80	40.96

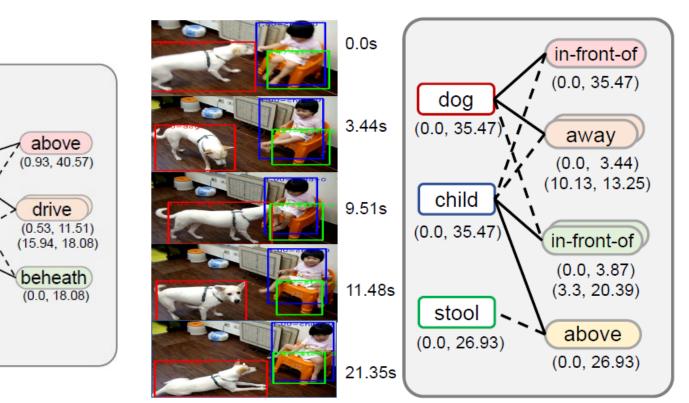
Table 3. Performance (%) on VidOR of SOTA models. The **Best** and second best are marked in according formats. Visual: $I3D_r$ and $I3D_f$ denote region-level and frame-level I3D features, respectively. Lang: The word embeddings of entity categories. Motion: It refers to the relative motion feature of entity pairs [34]. Mask: It means the localization mask of entities [46].

Compare with SOTA on VidVRD dataset

Models

VidVRD [35]_{MM} GSTEG [40]_{CVPR} VRD-GCN [30] MHA [36]_{MM'20} IVRD [22]_{MM'21} VidVRD-II [34] Liu et al. [24]_{CV} Chen et al. [13] Liu et al. [24]_{CV} TRACE [39]_{ICC} **BIG-C** (Ours) Liu et al. $[24]_{CV}$ TRACE [39]ICC **BIG-C** (Ours) **BIG-C** (Ours)

Bipartite Graph Visualization


(0.0, 18.08)

	Featu	RelDet			RelTag			
	Visual	Motion	mAP	R@50	R@100	P@1	P@5	P@10
M'17	iDT	\checkmark	8.58	5.54	6.37	43.00	28.90	20.80
PR'19	iDT	\checkmark	9.52	7.05	8.67	51.50	39.50	28.23
MM'19	iDT	\checkmark	16.26	8.07	9.33	57.50	41.00	28.5 0
)	iDT	\checkmark	19.03	9.53	10.38	57.50	41.40	29.45
1	RoI	\checkmark	22.97	12.40	14.46	68.83	49.87	35.57
MM'21	RoI	\checkmark	29.37	19.63	22.92	70.40	53.88	40.16
VPR'20	RoI+I3D [†]	\checkmark	18.38	11.21	13.69	60.00	43.10	32.24
ICCV'21	RoI+I3D	\checkmark	20.08	13.73	16.88	62.50	49.20	38.45
VPR'20	RoI [†]		14.01	8.47	11.00	56.50	36.70	26.60
CV'21	RoI		15.06	7.67	10.32			
	RoI [†]		17.56	9.59	10.92	56.50	44.30	32.35
VPR'20	RoI+I3D [†]		14.81	9.14	11.39	55.50	38.90	28.90
CV'21	RoI+I3D		17.57	9.08	11.15	61.00	45.30	33.50
	RoI+I3D [†]		17.67	9.63	11.29	56.00	43.80	32.85
	RoI [‡]		26.08	$\overline{14.10}$	$\overline{16.25}$	73.00	55.10	40.00

