

Ca2-VDM: Efficient Autoregressive Video Diffusion Model with <u>Causal Generation and Cache Sharing</u>

Challenges for Exisiting Autoregressive VDMs

> Redundant computation:

Bidirectional

Generation

- The conditional frames at each AR step introduce much redundant computation

Bidirectional

Generation

> Quadratic computational complexity

- The extended conditional frames result in an O(n²) computational demand w.r.t to the AR step

(a) Bidirectional Attention

write

scache

(t=0)

write

🕻 cache

(t=0)

(a) Existing Autoregressive VDMs (w/ Extendable Condition)

Quantitative Results

Zero-shot FVD on MSR-VTT

Method	C	MSR-VTT	UCF101
ModelScope (Wang et al., 2023b)	Т	550	410
VideoComposer (Wang et al., 2023c)	Т	580	-
Video-LDM (Blattmann et al., 2023b)	Т	-	550.6
PYoCo (Ge et al., 2023)	Т	-	355.2
Make-A-Video (Singer et al., 2023)	Т	-	367.2
AnimateAnything (Dai et al., 2023)	T+I	443	-
PixelDance (Zeng et al., 2024)	T+I	381	242.8
SEINE (Chen et al., 2024b)	T+I	181	-
Ca2-VDM	T+I	181	277.7

VBench Evaluation

Finetuned FVD on UCF-101

Method	Res.	FVD
MCVD (Voleti et al., 2022)	64^{2}	1143
VDT (Lu et al., 2024)	64^{2}	225.7
DIGAN* (Yu et al., 2022)	128^{2}	577
TATS (Ge et al., 2022)	128^{2}	420
VideoFusion (Luo et al., 2023)	128^{2}	220
LVDM* (He et al., 2022)	256^{2}	372
PVDM (Yu et al., 2023)	256^{2}	343.6
Latte (Ma et al., 2025)	256^{2}	333.6
Ca2-VDM	256^{2}	184.5

Generation Time Cost (80 frames)

Mathad	Aesthetic	Imaging	Motion	Temporal
Method	Quality	Quality	Smoothness	Flickering
OS-Ext	44.39	50.74	98.93	98.57
Ca2-VDM	44.30	50.55	97.59	97.14

GPU Memory Usage w/ KV-Cache

Method	Denoising	Model Forward Shape	KV-cache Shape	KV-cache	Total
	Steps (T)	(B, C, L, H, W)	$(T, L_{\text{cond}}, hw, C')$	Memory Cost	Memory Cost
Live2diff	4	(4, 4, 1, 32, 32)	(4, 16, h'w', C')	1.42 GB	10.90 GB
Live2diff	50	(50, 4, 1, 32, 32)	(50, 16, h'w', C')	17.70 GB	29.46 GB
Ca2-VDM w/ PE	50	(1, 4, 8, 32, 32)	(1, 25, hw, C)	0.86 GB	4.79 GB
Ca2-VDM w/o PE	50	(1, 4, 8, 32, 32)	(1, 25, hw, C)	0.77 GB	3.95 GB

Kaifeng Gao^{*}, Jiaxin Shi^{*}, Hanwang Zhang⁴, Chunping Wang, Jun Xiao, Long Chen⁺

*Equal Contribution *Corresponding Author

Our Contributions: CA2-VDM

KV-Cache Queue

The key/value features of every temporal attention layer are written into the cache queue, and reused for every AR step to avoid redundant computation.

Causal Generation

Causal temporal attention & prefix-enhanced spatial attention. They 1) ensures each generated frame only depends on preceding ones, and 2) enhances the guidance from prefix frames.

> Cache Sharing The KV-cache is shared across all the denoising steps.

Qualitative Results

> Better transition consistency

> Better long-term consistency

> More Efficient Generation with Comparable Visual Quality.

- Faster generation speed
- Less GPU memory cost w/ KV-cache

Long-term generation results vs. Open-SORA Extendable Condition (OS-Ext)

Autoregressive Inference with Cache Sharing

The denoised $\mathbf{z}_0^{k:k+l}$ is input to the model again to compute its spatial and temporal KV-cache, which will be used in the next AR step

On Machine Learning

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Training with Clean Prefix

 $\widetilde{\mathcal{L}}_{\text{simple}}(\theta) = \mathbb{E}_{\boldsymbol{\varepsilon} \in \boldsymbol{t}} \left[\| (\boldsymbol{\epsilon}_{\theta}([\boldsymbol{z}_{0}^{0:P}, \boldsymbol{z}_{t}^{P:L}], \boldsymbol{t}) - \boldsymbol{\epsilon}) \odot \boldsymbol{m} \|_{2}^{2} \right],$

> Denoising stage

```
\boldsymbol{z}_{t-1}^{P_k:P_k+l} \sim p_{\theta}(\boldsymbol{z}_{t-1}^{P_k:P_k+l} | \boldsymbol{z}_t^{P_k:P_k+l}, \boldsymbol{z}_0^{0:P_k}). \quad \text{CausalAttn}(\boldsymbol{Q}_t^{P_k:P_k+l}, [\boldsymbol{K}_0^{0:P_k}, \boldsymbol{K}_t^{P_k:P_k+l}], [\boldsymbol{V}_0^{0:P_k}, \boldsymbol{V}_t^{P_k:P_k+l}]),
```

Cache writing stage